递归是一种解决问题的方法,将问题分解为更小的子问题,直到得到一个足够小的问题可以被很简单的解决。通常递归涉及函数调用自身。递归允许我们编写优雅的解决方案,解决可能很难编程的问题。

计算整数列表和

我们先不用递归来实现求一个整数列表的和

1
2
3
4
5
6
def sum(list):
sum = 0
for item in list:
sum += item
return sum
print(sum([1,2,3,4,5]))
1
15

递归实现

1
2
3
4
5
def sum(list):
if len(list)==1:
return list[0]
return list[0]+sum(list[1:])
print(sum([1,2,3,4,5]))
1
15

所有递归算法必须服从三个重要的定律:
递归算法必须具有基本情况。
递归算法必须改变其状态并向基本情况靠近。
递归算法必须以递归方式调用自身。

递归实现任意进制转化

1
2
3
4
5
6
7
8
def toStr(n,base):
convertString = "0123456789ABCDEF"
if n < base:
return convertString[n]
else:
return toStr(n//base,base) + convertString[n%base]

print(toStr(1453,16)[-0:])
1
5AD

栈帧:实现递归

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Stack:
def __init__(self):
self.items = []

def isEmpty(self):
return self.items == []

def push(self, item):
self.items.append(item)

def pop(self):
return self.items.pop()

def peek(self):
return self.items[len(self.items)-1]

def size(self):
return len(self.items)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
rStack = Stack()

def toStr(n,base):
convertString = "0123456789ABCDEF"
while n > 0:
if n < base:
rStack.push(convertString[n])
else:
rStack.push(convertString[n % base])
n = n // base
res = ""
while not rStack.isEmpty():
res = res + str(rStack.pop())
return res

print(toStr(1453,16))
1
5AD

可视化递归

1
2
3
4
5
6
7
8
9
10
11
12
13
import turtle

myTurtle = turtle.Turtle()
myWin = turtle.Screen()

def drawSpiral(myTurtle, lineLen):
if lineLen > 0:
myTurtle.forward(lineLen)
myTurtle.right(90)
drawSpiral(myTurtle,lineLen-5)

drawSpiral(myTurtle,300)
myWin.exitonclick()

谢尔宾斯基三角形

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import turtle

def drawTriangle(points,color,myTurtle):
myTurtle.fillcolor(color)
myTurtle.up()
myTurtle.goto(points[0][0],points[0][1])
myTurtle.down()
myTurtle.begin_fill()
myTurtle.goto(points[1][0],points[1][1])
myTurtle.goto(points[2][0],points[2][1])
myTurtle.goto(points[0][0],points[0][1])
myTurtle.end_fill()

def getMid(p1,p2):
return ( (p1[0]+p2[0]) / 2, (p1[1] + p2[1]) / 2)

def sierpinski(points,degree,myTurtle):
colormap = ['blue','red','green','white','yellow',
'violet','orange']
drawTriangle(points,colormap[degree],myTurtle)
if degree > 0:
sierpinski([points[0],
getMid(points[0], points[1]),
getMid(points[0], points[2])],
degree-1, myTurtle)
sierpinski([points[1],
getMid(points[0], points[1]),
getMid(points[1], points[2])],
degree-1, myTurtle)
sierpinski([points[2],
getMid(points[2], points[1]),
getMid(points[0], points[2])],
degree-1, myTurtle)

def main():
myTurtle = turtle.Turtle()
myWin = turtle.Screen()
myPoints = [[-300,-150],[0,300],[300,-150]]
sierpinski(myPoints,5,myTurtle)
myWin.exitonclick()

main()